码垛机厂家
免费服务热线

Free service

hotline

010-00000000
码垛机厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

多路交流异步采样及DSP软件校准技术

发布时间:2020-06-30 19:44:17 阅读: 来源:码垛机厂家

摘要: 本文介绍了一种在DSP平台下对多路交流信号采样时采用的一种异步采样方法。

本文引用地址:关键词: 交流采样;校准;DSP

引言

在对电力线路的电压和电流进行测量时,为使测量值具有较高的精度,一般都采用交流采样技术。目前,比较常用的交流采样方法是:在交流信号的一个周期内,等间隔采样N点数据,然后利用傅立叶变换,计算出基波及一些谐波的有效值,为衡量供电质量通常还要求计算出各信号的相位。但由于同一测量装置要同时对很多路电压和电流量进行采样,而采样所用的A/D的输入又有限,不可能对电压和电流量同时进行采样,所以,一般将所有的交流通过多路开关的切换依次送入A/D进行采样。由于采用的是异步采样,所以同一个线路中的A、B、C三相之间的相位就会产生误差,所测出的同一个交流量的电压值和电流值之间的相位也会产生误差,如果不对相位采取一定的处理措施,就不能有效的提高计算值的精度。

硬件系统

硬件系统的示意图如图1所示。外部输入的电压电流经过电压互感器或电流互感器,经过信号调理,变换成小电压信号,把这些小电压信号经过滤波、放大处理之后送入模拟多路开关。接入多路开关的信号AIN1、AIN2、…AIN15的切换由DSP通过FPGA来控制。多路开关的输出接电压跟随器,以降低信号源的输出阻抗,保证得到较高的采集精度。经A/D转换完成后的数据由DSP芯片进行采集处理。

图1 硬件系统

A/D可以选用Linear公司的16位双极性高精度模数转换器LTC1609。

如果进行N点傅立叶变换,应该在一个周期内等间隔均匀采样N个点。但如果以固定的时间间隔进行采样,当电网中交流信号频率偏离50Hz时,所采集到的N个点就不一定恰好为一个周期的数据。所以,在本系统中,DSP实时监测交流信号周期的变化,根据当前最新的周期值TAC计算出两个采集点之间的间隔时间为:

TSMP=TAC/N

DSP将TSMP送给FPGA,FPGA经过运算,产生两个信号:一个是采样命令信号SMP、另一个是启动A/D转换信号R/C,这两个信号都是低电平有效。图2是用MAX-PLUS II软件仿真出的SMP与R/C信号的波形关系。

图2 SMP和R/C的波形示意图

当SMP信号到来时,表示新一轮采样的开始。SMP信号后紧跟15个R/C信号,依次负责对15路输入信号的A/D转换。所以每一轮采样可以对15路信号各采集一个点。每个点的数据经过64阶有限冲激响应滤波器滤除高次谐波之后存储在缓冲区内。

当A/D采用内部时钟模式时,先将A/D的片选/CS置为低电平,在R/C信号的下降沿,A/D将当前输入的信号转换为保持状态,开始进行A/D转换,同时A/D开始将上一次的转换结果向DSP发送。转换开始后R/C必须在1ms内跳回至高电平,以确保输出结果不会发生错误。本系统中,R/C信号的低电平持续0.5ms。两个R/C信号的下降沿之间的间隔TRC设置为12ms,以保证A/D启动下一路转换时当前的转换能够结束,以及上一次转换后的结果送入DSP。

校准

经过N个SMP信号之后,DSP就为15路信号各收集了一个周波共点的数据。对点数据进行快速傅立叶变换,得到各路信号的基波和若干次谐波所对应的频域值。从而可以求出有效值、相角等各个量。但实际上由于信号的幅度和相位经过变换、滤波、放大、采样、量化后处理时都要偏离理论值,所以,对于FFT运算的结果要进行校准处理。

可以用一个标准三相交流电源,将它的输出电压调整为电压100V、输出电流调整为5A、频率为50Hz、ABC三相各相差120度,然后将电压电流信号接入系统对应的输入端,通过上层软件向DSP发送校准命令,开始计算幅度和相位的校准参数。

幅度校准

如果有效值为100V、频率为50Hz的电压信号经过A/D转换后的数值大约在P左右,那么,我们就可以用P作为一个标度,用它来代表100V。同样,我们可以Q代表有效值为5A、频率为50Hz的电流。

在校准过程中,假定得到的m路电压的有效值的数字量为,得到的电流的数字量为,则我们把它们通过一个电压校正系数和电流校正系数将其校正到标度上去。即有如下公式:

可求得

ai=P/Vi,b=Q/Ij 其中i=1,2,…,m;j=1,2,…,15-m

在系统正常工作时,将得到的信号的幅度有效值乘以校准系数可以得到比较精确的数值。

相位校准

交流电的相位关系是反映供电质量的比较重要的参数。相位校准从两个方面进行:一方面要补偿多个信号由于异步采样造成的相位偏差;另一方面要校准信号调理过程中造成的相位偏移。

如图3所示,假定在t时刻对一个信号采样的结果如(a)所示,但如果延迟到t+Dt采样的话,其结果如(b)所示,(b)与(c)的相位是一样的。通过对比可知,(c)的相位比(a)的相位超前,即,延迟采样的结果会使相位超前。

图3 延迟采样示意图

我们主要关心交流信号相位之间的相对关系,所以,以中间第8路信号AIN8为基准,其它信号的相位都向它校准。那么第8路信号以前的信号的相位都是滞后的,而第8路以后的各信号的相位都是超前的。对于滞后的相位要加上一个校准相位,对于超前的相位要减去一个校准相位。所以,第i(i=1,2,...,15)路信号的基波需要校准的角度q为:其中,TAC是交流的正常工频周期20ms,TRC是相邻两个R/C信号的间隔时间。谐波的校准角度应该再乘以谐波次数,假设只计算到n次谐波,则可得第一组校准参数为:

其中,第i行代表第路信号的基波与各次谐波需要校准的角度。

如果利用傅氏算法求出信号的频域表示为,那么对它的相位补偿角度后信号可表示为:

(1)

经过上述对相位的校正,所有的信号都相当于在同一时刻被采样。然后,再对各路信号校准由于在信号调理过程中造成的相位偏移。先求出各路信号基波的相位,然后将接入A相的第1、4、7、10、13路信号基波的相位减去120度,将接入C相的第3、6、9、12、15路信号基波的相位加上120度。这样各相信号之间就消除了本身固定的120度的相位差。这时候得到的“对比相位”是由于各路信号经过的物理通道不同而产生的。仍以第8路信号为基准,将各路信号的对比相位减去第8路信号的相位之后的值作为另一组相位校准参数:

最后将两组相位校准参数相加,即为最终的相位校准参数为:在系统正常运行时,利用对信号进行相位校准。

仿真验证

利用Matlab工具以一路信号为例说明对幅度的校准方法。

假定有一包含有高斯白噪声的正弦信号x=sin(2pft)+0.1×randn(1,N),其中f=0.25,fs=1,N=64。randn()函数产生一个均值为1呈正态分布的随机信号。信号x的频谱及64点采样后的值如图4所示。

图4 含有白噪声的正弦信号的频谱及采样值

通过对一个周期内的64点数据进行FFT运算,利用公式求得信号的幅度值为AC=1.104。其中Ar和Ai分别是第次谐波的实部和虚部,n是计算中所使用到的最高谐波次数(n≤32,这里取n=16)。如果预先通过前面所述求得校准系数a,就可以得到校准后的幅度值。在这里,根据信号x是由幅值为1的正弦波和均值为0.1的加性高斯白噪声组成的特点,由前面求校准系数的公式,我们可以假定a=1/(1+0.1)=0.909,则可得到最终校准后的幅度值为:A=AC×a=1.104×0.909=1.003。与实际的幅度值1.000相比,精度可达0.3%。

通过在实际产品中采用这种技术发现,一般情况下,精度可以控制在0.5%以内。可以满足大多数测控场合对精度的要求。

对于相位的校准,方法与此类此。

参考文献:

1. 胡广书,数字信号处理--理论、算法与实现,清华大学出版社,2005,第121-122页

2. 苗瑜,计量管理基础,河南省计量测试学会,2006,第62-65页

3. 郑君里,信号与系统,高等教育出版社,2000,第9-11页

4. 陈德树,计算机继电保护原理与技术,华中理工大学出版社,1998,第130页

5. 张举,微型机继电保护原理,中国水利水电出版社,2004,第51页

6. 张志涌,精通MATLAB6.5,北京航空航天大学出版社,2003,第121-131页

7. 毛晓波,交流采样技术及其DSP实现方法,微计算机信息,2005/2

青岛制作防静电工作服

工程服制做

衬衫订制

济南职业装制做